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ON THE NUMERICAL FACTORS OF THE ARITHMETIC FORMS 
n i34 * 

BY R. D. CARMICHAEL. 

Let a + ,3 and ao3 be any two relatively prime integers (different from 
zero). Then a and : are roots of the quadratic equation 

Z2 - (a + 3)Z + Ca4 = 0. 

It is obvious that the numbers Dn and Sn, 

Dn = ? on 
= a n-1 + a n-2 + ... + 13n-1 Sn = an + O3n 

are integers, since they are expressed as rational integral symmetric func- 
tions of the roots of an algebraic equation with integral coefficients with 
leading coefficient unity. The principal object of the present paper is 
an investigation of the numerical factors of the numbers Dn and Sn. The 
case when a and : are roots of unity is excluded from consideration. (See ? 2.) 

The most valuable treatment of the questions connected with these 
numbers is that of Lucas. t The special case' in which a and i3 are integers 
has been considered by Siebeck,4 Birkhoff and Vandiver,? Dickson,11 and 
Carmichael. ? 

In Lucas's paper many results of interest and importance are obtained. 
The methods employed, however, are often indirect and cumbersome. In 
the present paper a direct and powerful method of treatment** is employed 
throughout; and in connection with the new results which are obtained 
many of Lucas's theorems are generalized and several errorstt in the 
statement of his conclusions are pointed out. 

In ? 1 several fundamental algebraic formulae are obtained and a partial 
factorization of Dn and Sn is effected. In ? 2 these algebraic formula 
are employed to derive numerous elementary properties of the integers 

* Presented to the American Mathematical Society, December, 1912. 
t American Journal of Mathematics, 1 (1878): 184-240, 289-321. 
1 Crelle's Journal, 33 (1846): 71-77. 
? Annals of Mathematics, (2) 5 (1904): 173-180. 
American Mathematical Monthly, 12 (1905): 86-89. 

? American Mathematical Monthly, 16 (1909): 153-159. 
** Compare the method employed by Dickson in the paper already cited. 
tt Compare the review of Lucas's paper in the Jahrbuch tiber die Fortschritte der Mathe- 

matik, 10 (1878): 134-136. 
30 
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DA and Sn relative to divisibility, and these properties are stated in explicit 
theorems. 

In ? 3 the important question of the appearance of a given prime 
factor in the sequence D1, D2, D3, ... is investigated. The principal 
results are contained in Theorems XII and XIII. Attention is called to 
the new number-theoretic functions introduced in connection with Theorem 
XIII and its corollary. 

In ? 4 a detailed study is made of the numerical factors of a set of 
numbers which are the values of an algebraic form Fk(a, ,3) which may be 
defined as that irreducible algebraic factor of a-'k - 1k which is not a factor 
of any a" - p3" for which v < k (but see the definition in ? 1). This in- 
vestigation is fundamental in the study of the numbers Dn and Sn, and the 
results which are here obtained have important applications in the theory 
of numbers. Attention is called especially to Theorems XIV, XVI and 
XVIII. 

In ? 5 the theory of " characteristic factors " of F., Dn and Sn is de- 
veloped. 

In ? 6 very simple proofs are given of certain special cases of Dirichlet's 
celebrated theorem concerning the prime terms of an arithmetical progression 
of integers; in particular, it is shown that there is an infinitude of prime 
numbers of each of the forms 4n + 1, 4n - 1, 6n + 1, 6n - 1. 

In ? 7 are given a number of theorems which are useful in the identi- 
fication of large prime numbers. Among the results obtained the following 
two alone will be mentioned here: A necessary and sufficient condition that 
a given odd number p is prime is that an integer a exists such that 

F,-,(a, 1) 0 mod p; 

a necessary and sufficient condition that 22" + 1, n > 1, is prime is that 

3221 + 1 _ O mod 229 + 1. 

1. Notation. Fundamental Algebraic Formulae. 
Let 

Qn(X) = 0 

be the algebraic equation whose roots are the primitive nth roots of unity 
without repetition, the coefficient of the highest power of x in Qn(x) being 
unity. The polynomial Qn(x) has all its coefficients integers; and it is of 
degree sp(n), where s(n) denotes the number of integers not greater than n 
and prime to n. 

From the theory* of the primitive roots of unity we have two formulae 
* See Bachmann's Kreistheilung, especially the third lecture. 
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which are fundamental for our purposes. Thus, 

(1) Zn - 1 = jjQd(X), 
d 

where d ranges over all the divisors of n. Also, 
() (Xn - 1) l lI(XnIPiPi - 1) ... 

(2) Qn(X) 
= 

l(XnP '- 1) _ (Xn/pipipk - 1) ... 

where the p's denote the different prime factors of n and where the products 
denoted by II extend over the combinations 2, 4, 6, * * at a time of Pi, P2, 
p 3 * * in the numerator and over the combinations 1, 3, 5, * at a time 
in the denominator. 

Let a + , and ao3 be any two relatively prime integers (different from 
zero); then a and 3 are the roots of the equation 

Z2 - (a + O)z + ao3 = 0 

whose coefficients a + , and a: are any two relatively prime integers 
both of which are different from zero. We shall exclude the trivial case 
CZ = , = 1. It is then clear that a and ,3 cannot be equal. 

Now an + A represents an integer for every value of n, since the func- 
tion an + on is a symmetric polynomial in a and A and has integral coef- 
ficients. On the other hand the function an o An does not necessarily 
have an integral value. If, however, this number is divided by a - B 
the result is clearly an integer, since it may obviously be written as a rational 
integral symmetric function of a and : with integral coefficients. Ac- 
cordingly, let us define the integers Dn and Sn, for every value of n, by the 
relations 

Dn = Cen- 
on 

On-1 + Ce n-2 + ...+ 0 n-1 Sin = Cen + On. 

Then, obviously, 
Sn D2n 

Dn 

so that a study of the factorization of the form Dn, for varying values of n, 
includes incidentally that of the form Sn. We shall therefore be interested 
primarily in the form Dn. 

We define Fk (a, 3) by the relation 

(3) Fk(ae, 3) = I3 (k)Qk(aII) 

We shall now show that Fk(a, 3) is an integer for every value of k except 
k = 1. The theorem is obviously true for k = 2; for, 

F2(a, A) = a + he 
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Then suppose that k is greater than 2. Let w be a primitive kth root of 
unity. Then evidently, 

4(k) 

(4) Fk(a, 0) - by (k)Qk(a/0) = II(a - wa8i) 

where for i = 1, 2, ** , p(k), the s, are the wo(k) positive integers less than 
k and prime to k. Hence 

4(k) 

Fk(a, d) = I (a - 

since 
coc- = 1 

when 
s, + sk = k 

and the factors in the above equation obviously fall into pairs such that the 
sum of the s's in each pair is k. Hence we see readily that 

16(k) (k) 

Fk (a, f3) = II (aWk" -( w8a), 
i=1 j=l 

where in the last member sj is written for k - si. By comparing this 
equation with (4) we find that 

Fk(a, 3) = Fk(1, a); 

that is, Fk(a, 3) is symmetric with respect to a and 3. But it is a poly- 
nomial in a and d with integral coefficients. Hence we conclude that 

The number Fk(a, () is an integer for every value of k except k = 1. 
Now from (1) we have readily 

(5) DDn = t = IT'Fd ( 3), 
a- =L dka 

where d ranges over all the divisors of n except unity. This important 
formula gives a (partial) factorization of the integer Dn. Likewise, if v is 
any divisor of n, 
(6) Dw.v = II' Fa(a (), 

a 

where a ranges over all the divisors of n/v except unity. If now we divide 
the first of these equations by the second, member for member, we have 

(7) n= a0(&-1)/&-+ an (-2)/Yn/ + . . an"'(3n -2)1v4+ on(v-1)/v.=. JIFk(a, 3) 

where k ranges over all the divisors of n which are not at the same time 
divisors of n/v. 
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From (2) we obtain readily the equation 

(8)(a, 0) - (aOn - fn) . IIH(an/pipi -_ An/Pipi) ... 
(8) Fn~a, fi) =I(an/Pi _ On/pi) . (an/PiPjPk - OPiPjPk) ... 

where the factors denoted by II extend over the combinations 2, 4, 6, * .. 

at a time of pi, P2, * * * in the numerator and over the combinations 1, 3, 5, 
... at a time in the denominator. The total number of factors in the 
numerator of this equation is the same as that in the denominator; for, 
obviously, the first of these numbers is the sum of the positive terms and 
the second is the sum of the negative terms in the expansion of (1 - 1)? 
by the binomial formula, r being the number of different prime factors of n. 
Hence, dividing each of these factors in both numerator and denominator 
by a - f, we have 

(9) Fn(a, fi) = Dn H IDn/ipip ...* 
H[Dn/ pi H[Dn/ ipjpC .. 

where the products denoted by II have a meaning similar to that above. 
Let p be any prime factor of n and write 

n = ppa 

where the exponent a is so chosen that v is an integer which is not divisible 
by p. Consider the factors in the second member of (9) into which p 
does not enter explicitly; from (9) itself it it clear that these factors alone 
have the value F (aPa, fpa). In the same-way we see that the factors into 
which p enters explicitly have the value 1IF1 (aPa-, fpPal1). Hence 

(10) Fn(a fi) - F,(pa, fpa) . F1 (,pa-l, pal) 
Since 

Fi(af) =a - a, 

equation (10) may be used as a recursion formula for determining Fn(a, f) 
For n < 36, Sylvester's table* of cyclotomic functions may conveniently 
be employed for finding Fn(ay f). 

In passing we note without demonstration that (10) may be proved 
directly and then be employed for the derivation of (9).t 

If, now, in equation (7) we replace n by 2n, give to v the value 2 and 
remember that 

D2n Sn, 
D= 

we have 
(11) Sn= an + fI Fk(a, f), 

A, 

* American Journal of Mathematics, 2 (1879): 367-368. 
t Compare Dickson, 1. c., p. 86. 
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where k runs over all those divisors of 2n which contain 2 to the same power 
as 2n itself. This important formula gives a (partial) factorization of the 
integer Sn. 

Let v be any odd divisor of n; then, writing n/v for n in (11) we have 

(12) Sn/, = flF(a, ( ), 
k 

where k runs over all those divisors of 2n/v which contain 2 to the same power 
as 2n/v itself. Dividing (11) by (12), member for member, we have 

(13) Sn = II Fk odd, 
Sn/ Y k 

where k runs over all those divisors of 2n which contain 2 to the same power 
as 2n itself and which do not divide 2n/v. 

2. General Properties of the Integers Dn and Sn Relative to Divisibility. 

In view of the fact that a rational integral symmetric function of a, 0j 
with integral coefficients is an integer we have readily the two equations 

(a + fl)n = an + fOn + af3Il = Sn + c43I1, 

Dn = a 0 = a + 3n1 + a1312= Sn-i + a13I2, 

where I, and I2 are integers. Since ad and a + ,3 are relatively prime 
integers it follows from the first of these equations that Sn is prime to a13 
for every value of n. Then from the second of the equations we conclude 
that Dn is likewise prime to a: for every value of n. Hence we have the 
following theorem: 

THEOREM I. The integers Dn and Sn are both prime to ao(. 
This theorem enables us to dispose of an exceptional case; namely, 

when Dm = 0 for some value of m. In this case alm = (3m and hence 

Sm= 2am. 

But Sm is prime to aod and hence to amolm". These two results agree only 
when 

am. = Om 

so that in this case a and ( are both roots of unity. It is easy to see that 
Sk can assume no other value than - 2, - 1, 0, 1, 2; for 

ISkl < l jka + (3kj = 2. 
Now 

(a _ ()2 = (a + ()2 - 4ao = integer; 
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and hence 
la -(3l 5 1, 

since a (3. Therefore 
Dkj _ak - O3ki < lakI + l(kI = 2, 

so that Dk can take only the values -2, - 1, 0, 1, 2. A corresponding dis- 
cussion can be made when Sm = 0 for some value of m, and with like results. 
The cases Dm = 0 for some m and Sm = 0 for some m are therefore both 
trivial. They arise when and only when a and A are roots of unity. Hence 
in what follows we shall exclude from consideration the case in which a and (3 
are roots of unity. Then Dm and Sm are always different from zero. 

Now 
(aOn + on)2 - (aOn - On)2 = 4 ann, 

and hence 
52 - (a - 3)2Dn2 = 4a n/n. 

It is clear that (a - ()2 is an integer. Then from the above equation it 
follows that any common divisor of Sn2 and Dn2 must be a divisor of 4a n~n; 
but by Theorem I such a divisor is prime to ad. Hence it is a divisor of 4. 
Therefore, either Dn and Sn are relatively prime or they have the greatest 
common divisor 2. That both of these cases may arise is shown by the 
following examples: 

(1) a = 2, (3 = 1. Dn and Sn have not the common divisor 2 and hence 
are relatively prime; 

(2) a = 3, ( = 1. Dn and Sn have the common factor 2 if n is even. 
Hence we have the following theorem-:* 
THEOREM II. The integers Dn and Sn either are relatively prime or 

have the greatest common divisor 2. 
We shall now determine the character of Dn and Sn relative to divisi- 

bility by 2. From Theorem I it follows that both of them are odd when 
a(3 is even. Hence we have to treat further only the case when ad is odd. 
This will separate further into two cases according as a + ( is odd or even. 
We start from the recurrence formula 

)D -+2-(a + f3)Dn+l + a(Dn = 0, 

Sn+2 - (a + (3)Sn+l + a(S,. = O0 

which are readily verified by substituting for Dk and Sk, k = n, n + 1, 
n + 2, their values in terms of a and (3. Since for the present discussion 
a(3 is odd, we have from (14) 

Dn+2 -Dn Sn+2 Sn mod 2 
or 

Dn+2 -Dn+1 + Dn, Sn+2 Sn+1 + Sn mod 2 
according as a + ( is even or odd. 

* Lucas (1. c., p. 200) states inaccurately that D. and S. are relatively prime. 
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Now D1 = 1 and D2 = a + g. Hence from the above congruences 
which involve Dn we see readily that when a + ,3 is even Dn is even or odd 
according as n is even or odd; and that when a + f is odd, Dn is even or 
odd according as n is or is not a multiple of 3. 

We treat the number Sn in a similar manner. We have 

Si = at+t, S2 = a2+f2 = (a+f)2 - 2af. 

Hence, if a + ,3 is odd both S1 and S2 are odd; and if a + fi is even both 
Si and S2 are even. Therefore from the above congruences, involving Sn 
we conclude readily that if a + g is even Sn is even for all values of n; 
and that if a + g is odd Sn is even or odd according as n is or is not a multiple 
of 3. 

Collecting these results we have the following theorem: 
THEOREM III. If aOs is even both Dn and Sn are odd. If ao3 is odd and 

a + f3 is even, then S. is even for all values of n while D n is even or odd according 
as n is even or odd. If both aod and a + FI are odd then Dn and S are both 
even or both odd according as n is or is not a multiple of 3. 

From the properties of symmetric functions of the roots of an algebraic 
equation and the algebraic divisibility of Dn by D, when v is a divisor of 
n, it follows immediately that the integer D. is divisible by the integer 
D. when v is a divisor of n. This is also an immediate consequence of 
equation (7); and the latter equation in general states more than this, that 
is, it gives a partial factorization of the integer Dn/Dv. Thus we have the 
following theorem: 

THEOREM IV. If v is a divisor of n then D, is a divisor of D,, and we have 

Dn = 11F g), 

where k ranges over all those divisors of n which are not at the same time divisors 
of P. 

For v = 1 this theorem gives a partial factorization of Dn, since D1= 1. 
In the preceding section we proved that the quantities Fk(a, 43) have 
integer values. 

By the aid of equation (13) the following theorem may be demonstrated: 
THEOREM V. If v is a divisor of n such that n/v is odd then Sn is divisible 

by S. and we have 

S= Fk(a, 4), 

where k runs over all those divisors of 2n which contain 2 to the same power as 
2n itself and which do not divide 2 v. 
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From the identity 

(am _- #m) (an + 3n) - (an - An) (am + Am) = 2anfln(am-n - 3m-n), m > n, 

we have readily 
(15) DmSn - DnSm = 2an/3nDm-n. 

From this equation and the fact that Dm and Dn are prime to a13 it follows 
that every common odd divisor of Dm and Dn is also a divisor of Dn; 
whence we conclude readily that every common odd divisor of Dm and Dn 
is a divisor of D, where v is the greatest common divisor of m and n. 
But according to Theorem IV D, is a divisor of Dm and Dn. Hence the 
greatest common divisor of Dm and Dn is D, provided that either Dn/Dy 
or Dn/D, is odd. This latter fact we shall now prove by aid of Theorems 
I and III. 

We have 
Dm am O m3m am/v - am/v 
D~ a~-3~ - 

if we replace a", #Iv by a- ,1. The last member of the above equation we 
denote by Dmv. We define D-,,I in a similar manner. It follows from 
Theorem I that al03' and a" + 13v are relatively prime. They are both dif- 
ferent from zero. That is, aB and a + a are relatively prime integers both 
of which are different from zero. Hence wp may apply Theorem III to 
DmI, and D,/I. If a-3 is even both of these numbers are odd. If a-f is odd and 
a + 1 is even one of the numbers DmIV and DnV is odd; for either m/v or n/v 
is odd, since v is the greatest common divisor of m and n. Likewise, if ad 
and a + a are both odd then one of the numbers D).,, and DnyI is odd; for 
either m/v or n/v is not divisible by 3, since v is the greatest common 
divisor of m and n. Hence Dai, and Dn/y have not the common factor 2. 

Remembering that D.1, = Din/D and Dn/, = Dn/Dy and making use of 
the results of the last two paragraphs we have the theorem:* 

THEOREM VI. The greatest common divisor of DA and Dn iS D, where v 
is the greatest common divisor of m and n. 

Since D1 = 1 we have at once the following corollary: 
COROLLARY. The integers Dm and Dn are relatively prime when m and n 

are relatively prime. 
The example 

S6(2, 1) = 26 + 1 = 5.13, S4 = 24 + 1 = 17, S2 = 22 + 1=5 

shows at once that the greatest common divisor of Sm and Sn is not always 
* The part of this theorem which applies to the odd divisors of Dm and D. is due to Lucas 

(1. c., p. 206). 
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S, where v is the greatest common divisor of m and n. If, however, m/v 
and n/v are both odd this simple law obtains, as we now show. In this 
case it follows from Theorem V that S. is a common divisor of Sm and Sn. 
Now 

D22m = SmDm 
and 

D2n = SnDn, 

whence we conclude by aid of Theorem VI that the greatest common divisor 
of Sm and Sn is a factor of D2,. Now 

D2v = SvDv 

and hence we have only to examine what factors D, has in common with 
Sm and Sn. Now D, is a factor of D, and Dm and Sm have the greatest 
common divisor 1 or 2. Hence D. has with Sm and Sn the greatest common 
divisor 1 or 2. Therefore Sm and Sn have the greatest common divisor S, 
or 2S,; and in the next two paragraphs we show that the latter case does 
not arise. 

To prove that the greatest common divisor under consideration is not 
2S, it is sufficient to show that either Sm/Sv or Sn/S, is odd. This follows 
at once from Theorem III if a3 is even; for then Sm and Sn are odd. In 
general 

S' _ 
am + 3M anIv + X1/' 

Sv. all + TV1 -a + 
~ 

if a, = a and B = B. Denote the last numerator above by Sm./ and define 
S,,, in a similar way. Then Theorem III is applicable to S,/v and Snt, 
Now either m/v or n/v is prime to 3, and hence one of the numbers S./ 
and Sn&v is odd if a- and a + B are both odd, that is, if a3 and a + 3 are 
both odd. In this case, then, one at least of the numbers Sm/Sv and Sn/Sv 
is odd. 

Let us next consider the case in which aj3 is odd and a + ,3 is even; 
say that a + $ is an odd multiple of 2k. Then, since 

S, = a+3 
and 

S2 = a2 + /2 = (a + p)2 - 2a3,: 

it is easy to see that S, and S2 are odd multiples of 2k and 2 respectively. 
By means of the second recursion formula (14) one sees that in general Sn 
is an odd multiple of 2k or of 2 according as n is odd or even. Hence in 
this case Sm/S and Sn/Sv are both odd, since m and v and likewise n and 
v are both odd or both even. 

Thus we have the following theorem: 
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THEOREM VII. If v is the greatest common divisor of m and n, and 
m/v and n/v are both odd, then the greatest common divisor of Sm and Sn is S. 

We turn now to an interesting theorem of a different character, namely: 
THEOREM VIII. Let ml, m2, *.., m8 and ni, n2, *.., n, be two sets of 

positive integers which have the property that any positive integer d, different 
from unity, which is a factor of (just) t integers of the second set is also a 
factor of at least t integers of the first set; then the number 

D1m * Dfl2 . n, 

Dni -Dn2 *Ae Dn, 
is an integer. 

This theorem is an immediate consequence of the (partial) factorization 
of D, given in equation (5). 

COROLLARY I. The product of any n consecutive terms of the sequence 
D1, D2, D32 ... is divisible by the product of the first n terms.* 

COROLLARY II. The number 

D1D2 ... Dnl~n2+ +nk 
(D1D2 *.. Dn) (D1D2 *.* Dn2) ... (D1D2 *** Dn) 

is an integer. 
This result is analogous to the theorem that the polynomial coefficient 

(n, + n2 + ... + nk)! 
n i~n2! ! ..no! 

is an integer. 
Let m and n be any two relatively prime positive integers and suppose 

that the positive integer d (d $ 1) is a divisor of s integers of the set 1, 2, 
*.. , m and of t integers of the set 1, 2, * * *, n. Then d is obviously a divisor 
of at least s + t integers of the set 1, 2, * * *, m + n -1. In view of this 
fact Theorem VIII yields the further corollary: 

COROLLARY III. If m and n are any two relatively prime positive integers, 
then the number 

D1D2 ... Dm+ni 
(D1D2 ... Dm)(DID2 ... Dn) 

is an integer. 
This theorem is analogous to that which asserts that 

(m+n-1)! 
m! n! 

is an integer, provided that m and n are relatively prime. 
* The result contained in this corollary is due to Lucas, who gave, however, a very different 

proof of it (Lucas, 1. c., p. 203). 
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Similarly one may prove an extended analogue of the theorem which 
states that 

(km,) ! (kM2) ! .. (kMk) k 2 
ml! M2! .. *mk! (ml + m2 + * +m)!' k>2 

is an integer, namely: 
COROLLARY IV. The number 

(DlD2 ... Dk?nl) (DlD2 ... D;km2) ..(DlD2 ..Dkm,) 
(D1D2 ... Dml)k1 ... (D1D2 ... * Dm)k (DlD2 ... Dml+m,+...+mk) 

is an integer. 
Just as equation (5) was used in the demonstration of Theorem VIII 

we may employ equation (11) to prove the following theorem: 
THEOREM IX. Let ml, M2, *.., m8 and ni, n2, *... n, be two sets of 

positive integers such that every positive integer d which is a factor of (just) t 
of the numbers ni, n2, ** , n, with odd quotient is also a factor of at least t 
of the numbers ml, i2 **, m8 with odd quotient. Then the number 

Sm< Sm,2 * e e e Sm. 

Sn 1 Snr * & , . Sn, 
is an integer. 

COROLLARY. The product of any 2n - 1 consecutive terms of the sequence 
Si, S3, S5, ... is divisible by the product of the first n terms. 

If m is any integer and q is any odd prime, it is obvious that there exist 
integers 

q- 1 
a1,a2, ...,a8, s- 2 

dependent on q alone, such that 
-n _mq = (am _ am) q + alam om(Oem - om) q-2 + a2l2mfl2m(am _ Om) q4 

+ * + aga8mI3sm(am - r); 
whence 

(16) Drnq = (a - j3) -lD + a,(& - f3) - + ... +aaqm:mDmD 

Let us evaluate a8. Since it is independent of a, ,3 and m, we may choose 
any convenient values for these numbers. Then put m = 1, f = 1, 
a = r + 1, where r is a positive integer to be chosen at convenience. Then 
from (16) we have 

(r + 1)q - 1 
(r~ - =a8(r+ r)a modr. 

If we suppose r to be a prime number different from q we see that a. is 
not divisible by r. If we put r = q2 it follows that a. is divisible by q but 
not by q2. Hence a8 = q. 
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Suppose now that Dm is divisible by p', X * 0, and by no higher power 
of p, p being a prime number; then from (16), since a. = q, we have 

(17) Dmq qaJmI:mDm mod p3. 

From this congruence it follows that pA+l is the highest power of p con- 
tained in Dmp, provided that p is odd, and that pA is the highest power of 
p contained in Dmq when q is an odd prime different from p. We enquire 
further: What is the highest power of p contained in D2m? We have 
D2m = DmSm. In Theorem III we have seen that Dm and Sm have no common 
odd factor (different from unity). Hence, if p is an odd prime the highest 
power of p contained in D2m is pA. If p is even, so that Dm is divisible by 2, 
it follows from Theorem III that Sm is divisible by 2. Then it follows from 
Theorem II that Dm and Sm have the highest common factor 2. Hence in 
this case D2m contains 2A+1; and it contains no higher power of 2 unless 
X = 1. 

These results lead to the following theorem: 
THEOREM X. If for X > 0, pA $ 2, pA is the highest power of a prime p 

contained in Dm then the highest power of p contained in Dmpa is pa+A, . 

being any number prime to p. If pA = 2, then Dm,,2a contains the factor 
2a+1 and Dmn is an odd multiple of 2.* 

Suppose that Sm is divisible by pA, X > 0, but by no higher power of 
the odd prime p. Then D2m contains pA and no higher power of p, since 

D2m = DmSm 

and Dm and Sm have no common odd prime factor. Therefore, according 
to the preceding theorem, D2m.,,p, or Dmpa * S.,.p-y A being prime to p, 
contains pa+A and no higher power of p. Moreover Dm.apa and Smupa 
do not have a factor p in common. Hence one of these numbers contains 
pa+k and no higher power of p while the other is pre to p. Since D2m 
is a divisor of DmAp if ji is even, we see that Dmnpa contains pa+A when ,u 
is even. When ,u is odd Sm is a factor of Smpa and hence in this case Smpa 
contains the factor pa+A. 

Thus we have the following theorem: 
THEOREM XI. If pA, X > 0, is the highest power of an odd prime p 

contained in Sm and ,u is a number prime to p; then if A is even Dmpa is divisible 
by pa+A and by no higher power of p and SmA.pa is prime to p, while if A is odd 
DMA, p is prime to p and Smu pa is divisible by pa+)A and by no higher power of p. 

* The special case of this theorem in which A = 1 is given by Lucas (1. c., p. 210), but Lucas 
failed to notice the exceptional character of the case when pA = 2. 
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3. On the Appearance of a Given Prime Factor in the Sequence 
D1, D2, D3, 

If it is known that a prime number p is a factor of D, theorems in the 
preceding section enable us to say how p enters into Dm#Lp- In the present 
section we show that any given prime p, which is not a factor of ao3, is a 
factor of a certain definite number of the sequence D1, D2, D3, * .; we also 
carry out other related investigations. We have need of two lemmas, as 
follows: 

LEMMA I. If S(aP, ,3P) is any rational integral symmetric function of 
APT j3P with integral coefficients, then 

S(aP, BP) S(a, A) mod p, 

p being a prime number. 
The proof is not difficult. From Fermat's theorem it follows that 

(18) aCOOP aCO mod p, 

since ca3 is an integer. Likewise 

(a+fl)P- =a+ modp. 

But by the aid of the binomial formula we see that 

(a +) )P acP +tP3modp, 

since the binomial coefficients for the prime exponent p are all multiples 
of p and (a + ,3)P - (acP + iP) is therefore clearly p times a polynomial 
which is symmetric in a, ,3 and has integral coefficients; that is, (a + 3) P 
- (aP + BP3) is p times an integer. Hence 

(19) aP + foP _ a +f mod p. 

But, since ae and ,P are roots of the equation 

X2 _ (aP + 3P)X + apfp = 0, 

it is a consequence of the theory of symmetric functions of the roots of an 
algebraic equation that S(aP, Op) can be expressed in the form 

S(aP, (P) = P(aP + (P", a<pp) 

where P is a polynomial in aP + (3P, aP"(P with integral coefficients. From 
(18) and (19) it follows that 

P(caP + P3, a"P(P) _ P(a + (, a() mod p. 
But 

P(a + 3, aC) = S(a, () 
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and therefore 
S(aog, ,3P) -S(au, ) mod p, 

as was to be proved. 
If m is any integer and q is an odd prime, we have an identity of the form 

(am - fm) Q = (am - 13qm) - qalmlm(amn(q-2) - 13m(q-2)) + 

whence it follows that 
(a - 3)-D q = Dmq + qI, 

where I is an integer. Hence 

Dm q -(a - 3)q-'Dm mod q. 
Hence, 

LEMMA II. If m is any integer and q is any odd prime, we have 

Dm (a- - 13) ( 'Dm mod q. 
In particular, 

D =- (a - ) q-lDqa- (a* - ( 3)a( q-l)Dj mod q. 

Hence, since D1 = 1, it follows that D a is divisible by q when and only 
when (ca - 3)2 is divisible by q. 

Theorem III gives exact information concerning the divisibility of 
Dn and Sn by 2. We shall now consider the question of the entrance of an 
odd prime factor q. If q is a factor of ao3 it follows from Theorem I that 
it does not divide either DA or S,. If it is a factor of (a - 1)2 then it divides 
D, as we readily see from Lemma II. In what follows we shall consider 
the divisibility of Dn and Sn by an odd prime p which is not a divisor of 
either (a _ /3)2 or a13. 

If in equation (15) we put m = p and n = 1 we have 

D Sj - D1S, = 2aoD3pa4, 
or 

(a + j3)Dp -Sp = 2aceDp-. 

From Lemma II it follows that 

Dp =- (a - 13)Pl mod p, 
and from Lemma I that 

Sp --a + 13 mod p. 

Hence from the last equation we have 

(a + 1)(a - 1)P-1 - (a + 1) 2a1Dp~1 mod p. 

Now (a _ 13)2 is an integer; and therefore it follows from Fermat's theorem 
that 

(a - 13)1 = 1 mod p. 
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Hence from the above congruence we have the two cases 
D i_ O mod p if (a- 3)P-l _ 1 mod p, 

a0D =_i - (a + A) mod p if (a- O)P-'=-1 mod p. 
Now it is easy to verify that 

Dpsl -(ax + O3)Dp + a0lDj = ; 
and hence we see that 

D,+ =_O mod p if (a- 3)P-1 -1 mod p. 
Therefore we have the following theorem:* 

THEOREM XII. An odd prime p which does not divide either (a - 3)2 

or aof is a factor of D 1 or of D,+1 according as (a - (3) 1 is congruent to 
+ 1 or to - 1 modulo p. 

Obviously, if a - 3 is an integer (that is, if a and /3 are integers) we 
have always that D,1 is divisible by p. 

By means of Theorems X and XII we are now to prove a result of funda- 
mental importance. In order to be able to state this result succinctly we 
shall employ a number-theory function X,.(n) which we define below. It 
is convenient at the same time to define a second function (op,(n) which is 
intimately related to X,.(n). 

Let rs and r + s be any two integers; that is, let r and s be the roots 
of any quadratic equation of the form 

.X2-ux + V = 0 

where u and v are integers. When p is an odd prime we define the symbol 

(I ) by the congruence 

(r s) P (1 ) modp, 

it being understood that ( 8) is the residue of least absolute value; 

whence (rps) = 0, + 1, or-1 according as (r - 8)2 is divisible by p, 

is a quadratic residue of p, or is a quadratic non-residue of p. The symbol 

(rY 8) is defined thus: 

( ') = 1, if rs is even; 

( ,2s) = 0, if rs is odd and r + s is even; 

( ') = -1, if rs and r + s are both odd. 
* This theorem is due to Lucas (1. c., pp. 290, 296, 297). Lucas's proof, however, is different 

from that above. 
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Then if 
n - paP al .a. pak, 

where pi, P2, *--, pk are the different prime factors of n, we define prs(n) 
by the equation 

(P. (n) = fjpiaii [pi - (r's)] 

This function is similar to one introduced by Lucas, 1. c., p. 300. It is, 
however, somewhat more general. For r = 2 and s = 1 we have 

(P21(n) = sp (n), 
where <(n) is Euler's so-function of n. The function introduced by Lucas 
does not have this interesting property of including the p-function as a 
special case. 

The functional value Xrs(n) is defined to be the least common multiple 
of the numbers 

- [P (pi)], i=1,2, 1 ,k. 

It is obvious that X,.(n) is a divisor of p,8(n). 
The functions (rs(n) and X,,(n) have several important properties; but 

this is not an appropriate place to develop them in full. 
The fundamental theorem to be proved may now be stated as follows: 
THEOREM XIII. If the number n, 

n = P laP2a2 . .. P kak, 

where P11 P2, * P i, are the different prime factors of n, is prime to aof and if 

X = B^(n), 
we have 

DA--0 mod n. 

To prove this theorem it is sufficient to show that DA contains the factor 
piai where i is any number of the set 1, 2, *--, k. This follows at once 
from previous results. For, X is a multiple of ti, 

ti = pi- [p- ( p d )1 =pi-1ki, 

say. From Theorems XII and III and the remark following Lemma II 
we see that Dk, is in every case divisible by pi; and hence from X that 
DA is divisible by piai. 

COROLLARY.* If (p = (pa (n), then Do e 0 mod n. 
* This corollary is essentially the same as a certain fundamental result due to Lucas, 1. c., 

p. 300. It should be noted that Lucas's statement of this theorem is not entirely accurate. 
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In connection with these simple theorems concerning the divisors of 
the numbers in the sequence D1, D2, ***it should be noticed that no laws 
of corresponding simplicity obtain in the case of the sequence Si, S2, 
We have seen that an odd prime p which does not divide either (a - p3)2 

or ad is a factor of D,, or of D,+i. But in the case of the sequence 
Si, S2, ... it often happens that a given prime number is not a factor 
of any term. Thus 7 is not a factor of Sn(2, 1), _ 2" + 1, for any 
value of n. More generally, suppose that Dk, where k is odd, has an 
odd prime factor p while p is not a divisor of any D, for v less than k. 
From Theorem VI it follows that Dm is divisible by p when and only when 
m is a multiple of k. If we suppose that p is a divisor of S, for any given 
value of n we shall be led to a contradiction. For, since D2n = DnSn, D2n 
is divisible by p; and therefore 2n is a multiple of k. But k is odd, and hence 
n is a multiple of k. Therefore Dn is divisible by p; and Dn and Sn have 
the common odd prime factor p, which is impossible. Hence, an odd prime 
number p which divides Dk, where k is odd, and does not divtide any D, for 
v less than k, is not a factor of any Sn. 

4. On the Numerical Factors of the Forms Fk(cx, A). 

We have already seen that the numbers Fk(a, ,3) are of fundamental 
importance in the factorization of Dn and Sno We turn therefore to a 
detailed treatment of these numbers. 

Let us suppose that 
F,(a, 3)Omodp, v > 

and that v is not a multiple of the prime number p. Suppose that k is a 
subscript for which 

Fk(a, /) O mod p. 

Now* F. and Fk are divisors of D. and Dk respectively, while the greatest 
common divisor of D, and Dk is Ds, where 8 is the greatest common 
divisor of v and k. If we suppose that a is different from v we shall be 
led to a contradiction; for, F, is then a factor of D,/Ds, as we see from (5), 
whereas from Theorem X it follows that Dl/Ds is not divisible by p since 
p is a factor of Ds and v/6 is prime to p. Hence 8 = v; and therefore k is a 
multiple of v. 

We shall now show that FPa(a, A), a > 0, is divisible by p but not by p2, 
except that when p = 2, v = 3, F6 may be divisible by 22. [From Theorem 
III it follows that F6 is divisible by 2.] If we suppose that we do not have 
simultaneously p = 2, v = 3, a = 1, we may proceed as follows: From 

* When no confusion can arise we sometimes write F, for F, (a, Al). 
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Theorem IV we have 
Da= 7Fi(a, A), 

D pa-i 

where i ranges over those divisors of ypa which contain the factor pa. 

From Theorem X it follows that the first member of this equation is divisible 
by p but not by p2. Hence (only) one of the numbers Fi(a, d) of the second 
member is divisible by p and it is not divisible by p2. Suppose that this 
number is that for which i = k. Then k is a multiple of pa. But from the 
discussion in the preceding paragraph we see that k is a multiple of P. 
Hence k = vpa, since this is the only common multiple of v and pa occurring 
as a subscript in the second number of our equation. 

From this we conclude that each of the numbers Fp, FVp * contains 
the factor p but that no one of them contains p2, except that when p = 2, 
P = 3, F6 may contain 22. 

Now consider the number F,11Pa, where A is greater than unity and is 
prime to p. It is a divisor of DVXp-/DVPa; and from X it follows that the 
latter number is not divisible by p. Hence FVEZPa is prime to p. 

Let us suppose that F12= (a - _ )2, is divisible by the odd prime p. 
From the remark following Lemma II we see that each of the numbers 
Fp, F,2, ... is divisible by p. Just as in the preceding argument we may 
show that no one of the numbers Fp2, Fp3, ... is divisible by p2, and that 
Fla is not divisible by p if ,u is greater than 1 and is prime to p and a > 0. 
The example 

a 1+ i.6, A = 1- 16, (a - ,)2 = 24, F3 = a2 + a4+12 = 9 

shows that F12 may be divisible by p while Fp is at the same time divisible 
by p2. If ji is greater than 1 and is prime to p and if further F., is divisible 
by p, we see at once that D,, and Dp are both divisible by p -contrary to 
the corollary to Theorem VI, which asserts that D,, and Dp are relatively 
prime since /i and p are relatively prime. Hence FA is not divisible by p. 

Now suppose that F12 is divisible by 2. Then, since 

F12 = (a - 1)2 = (a + 1)2 - 4aO 

it follows that a + 13 is divisible by 2. That is, F2 is divisible by 2. The 
example a = 2k + 1, 13 = 2- - 1 shows that F2 may be divisible by any 
power of 2 whatever. By means of the relation 

F2a = a2"2 + 12a1 = (a2a2 + 2a-2)2 - 2a2G212- 

it may be proved, however, that F2a, a > 1, is divisible by 2 but not by 22. 

To be continued. 
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