Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

ON THE NUMERICAL FACTORS OF THE ARITHMETIC FORMS $\alpha^{n} \neq \beta^{n}$.*

By R. D. Carmichael.

Let $\alpha+\beta$ and $\alpha \beta$ be any two relatively prime integers (different from zero). Then α and β are roots of the quadratic equation

$$
z^{2}-(\alpha+\beta) z+\alpha \beta=0
$$

It is obvious that the numbers D_{n} and S_{n},

$$
D_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1}+\alpha^{n-2} \beta+\cdots+\beta^{n-1}, \quad S_{n}=\alpha^{n}+\beta^{n}
$$

are integers, since they are expressed as rational integral symmetric functions of the roots of an algebraic equation with integral coefficients with leading coefficient unity. The principal object of the present paper is an investigation of the numerical factors of the numbers D_{n} and S_{n}. The case when α and β are roots of unity is excluded from consideration. (See § 2.)

The most valuable treatment of the questions connected with these numbers is that of Lucas. \dagger The special case in which α and β are integers has been considered by Siebeck, \ddagger Birkhoff and Vandiver, \S Dickson, $\|$ and Carmichael. $\$$

In Lucas's paper many results of interest and importance are obtained. The methods employed, however, are often indirect and cumbersome. In the present paper a direct and powerful method of treatment** is employed throughout; and in connection with the new results which are obtained many of Lucas's theorems are generalized and several errors $\dagger \dagger$ in the statement of his conclusions are pointed out.

In § 1 several fundamental algebraic formulæ are obtained and a partial factorization of D_{n} and S_{n} is effected. In § 2 these algebraic formulæ are employed to derive numerous elementary properties of the integers

[^0]D_{n} and S_{n} relative to divisibility, and these properties are stated in explicit theorems.

In § 3 the important question of the appearance of a given prime factor in the sequence $D_{1}, D_{2}, D_{3}, \cdots$ is investigated. The principal results are contained in Theorems XII and XIII. Attention is called to the new number-theoretic functions introduced in connection with Theorem XIII and its corollary.

In § 4 a detailed study is made of the numerical factors of a set of numbers which are the values of an algebraic form $F_{k}(\alpha, \beta)$ which may be defined as that irreducible algebraic factor of $\alpha^{k}-\beta^{k}$ which is not a factor of any $\alpha^{\nu}-\beta^{\nu}$ for which $\nu<k$ (but see the definition in §1). This investigation is fundamental in the study of the numbers D_{n} and S_{n}, and the results which are here obtained have important applications in the theory of numbers. Attention is called especially to Theorems XIV, XVI and XVIII.

In §5 the theory of " characteristic factors" of F_{n}, D_{n} and S_{n} is developed.

In § 6 very simple proofs are given of certain special cases of Dirichlet's celebrated theorem concerning the prime terms of an arithmetical progression of integers; in particular, it is shown that there is an infinitude of prime numbers of each of the forms $4 n+1,4 n-1,6 n+1,6 n-1$.

In § 7 are given a number of theorems which are useful in the identification of large prime numbers. Among the results obtained the following two alone will be mentioned here: A necessary and sufficient condition that a given odd number p is prime is that an integer a exists such that

$$
F_{p-1}(a, 1) \equiv 0 \bmod p ;
$$

a necessary and sufficient condition that $2^{2^{n}}+1, n>1$, is prime is that

$$
3^{2^{2 n-1}}+1 \equiv 0 \bmod 2^{2 x}+1
$$

1. Notation. Fundamental Algebraic Formulæ.

Let

$$
Q_{n}(x)=0
$$

be the algebraic equation whose roots are the primitive nth roots of unity without repetition, the coefficient of the highest power of x in $Q_{n}(x)$ being unity. The polynomial $Q_{n}(x)$ has all its coefficients integers; and it is of degree $\varphi(n)$, where $\varphi(n)$ denotes the number of integers not greater than n and prime to n.

From the theory* of the primitive roots of unity we have two formulæ

[^1]which are fundamental for our purposes. Thus,
\[

$$
\begin{equation*}
x^{n}-1=\prod_{d} Q_{d}(x) \tag{1}
\end{equation*}
$$

\]

where d ranges over all the divisors of n. Also,

$$
\begin{equation*}
Q_{n}(x)=\frac{\left(x^{n}-1\right) \cdot \Pi\left(x^{n / p_{i} p_{i}}-1\right) \cdots}{\Pi\left(x^{n / p_{i}}-1\right) \cdot \Pi\left(x^{n / p_{i} p_{j} p_{k}}-1\right) \cdots} \tag{2}
\end{equation*}
$$

where the p 's denote the different prime factors of n and where the products denoted by Π extend over the combinations $2,4,6, \cdots$ at a time of p_{1}, p_{2}, p_{3}, \cdots in the numerator and over the combinations $1,3,5, \cdots$ at a time in the denominator.

Let $\alpha+\beta$ and $\alpha \beta$ be any two relatively prime integers (different from zero); then α and β are the roots of the equation

$$
z^{2}-(\alpha+\beta) z+\alpha \beta=0
$$

whose coefficients $\alpha+\beta$ and $\alpha \beta$ are any two relatively prime integers both of which are different from zero. We shall exclude the trivial case $\alpha=\beta=1$. It is then clear that α and β cannot be equal.

Now $\alpha^{n}+\beta^{n}$ represents an integer for every value of n, since the function $\alpha^{n}+\beta^{n}$ is a symmetric polynomial in α and β and has integral coefficients. On the other hand the function $\alpha^{n}-\beta^{n}$ does not necessarily have an integral value. If, however, this number is divided by $\alpha-\beta$ the result is clearly an integer, since it may obviously be written as a rational integral symmetric function of α and β with integral coefficients. Accordingly, let us define the integers D_{n} and S_{n}, for every value of n, by the relations

$$
D_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1}+\alpha^{n-2} \beta+\cdots+\beta^{n-1}, \quad S_{n}=\alpha^{n}+\beta^{n}
$$

Then, obviously,

$$
S_{n}=\frac{D_{2 n}}{D_{n}}
$$

so that a study of the factorization of the form D_{n}, for varying values of n, includes incidentally that of the form S_{n}. We shall therefore be interested primarily in the form D_{n}.

We define $F_{k}(\alpha, \beta)$ by the relation

$$
\begin{equation*}
F_{k}(\alpha, \beta)=\beta^{\phi(k)} Q_{k}(\alpha / \beta) \tag{3}
\end{equation*}
$$

We shall now show that $F_{k}(\alpha, \beta)$ is an integer for every value of k except $k=1$. The theorem is obviously true for $k=2$; for,

$$
F_{2}(\alpha, \beta)=\alpha+\beta
$$

Then suppose that k is greater than 2. Let ω be a primitive k th root of unity. Then evidently,

$$
\begin{equation*}
F_{k}(\alpha, \beta)=\beta^{\phi(k)} Q_{k}(\alpha / \beta)=\prod_{i=1}^{\phi(k)}\left(\alpha-\omega^{s} \beta\right) \tag{4}
\end{equation*}
$$

where for $i=1,2, \cdots, \varphi(k)$, the s_{i} are the $\varphi(k)$ positive integers less than k and prime to k. Hence

$$
F_{k}(\alpha, \beta)=\prod_{i=1}^{\phi(k)}\left(\alpha-\omega^{s i} \beta\right) \omega^{k-s_{i}}
$$

since

$$
\omega^{k-s_{j}} \cdot \omega^{k-s_{i}}=1
$$

when

$$
s_{j}+s_{e}=k
$$

and the factors in the above equation obviously fall into pairs such that the sum of the s 's in each pair is k. Hence we see readily that

$$
F_{k}(\alpha, \beta)=\prod_{i=1}^{\phi(k)}\left(\alpha \omega^{k-s_{i}}-\beta\right)=\prod_{j=1}^{\phi(k)}\left(\beta-\omega^{s i} \alpha\right)
$$

where in the last member s_{j} is written for $k-s_{i}$. By comparing this equation with (4) we find that

$$
F_{k}(\alpha, \beta)=F_{k}(\beta, \alpha)
$$

that is, $F_{k}(\alpha, \beta)$ is symmetric with respect to α and β. But it is a polynomial in α and β with integral coefficients. Hence we conclude that

The number $F_{k}(\alpha, \beta)$ is an integer for every value of k except $k=1$.
Now from (1) we have readily

$$
\begin{equation*}
D_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\operatorname{II}_{d}^{\prime} F_{d}(\alpha, \beta), \tag{5}
\end{equation*}
$$

where d ranges over all the divisors of n except unity. This important formula gives a (partial) factorization of the integer D_{n}. Likewise, if ν is any divisor of n,

$$
\begin{equation*}
D_{n / v}=I_{\delta}^{\prime} F_{\delta}(\alpha, \beta), \tag{6}
\end{equation*}
$$

where δ ranges over all the divisors of n / ν except unity. If now we divide the first of these equations by the second, member for member, we have
(7) $\frac{D_{n}}{D_{n / \nu}}=\alpha^{n(\nu-1) / \nu}+\alpha^{n(\nu-2) / \nu} \beta^{n / \nu}+\cdots+\alpha^{n / \nu} \beta^{n(\nu-2) / \nu}+\beta^{n(\nu-1) / \nu}=\prod_{k} F_{k}(\alpha, \beta)$,
where k ranges over all the divisors of n which are not at the same time divisors of n / ν.

From (2) we obtain readily the equation

$$
\begin{equation*}
F_{n}(\alpha, \beta)=\frac{\left(\alpha^{n}-\beta^{n}\right) \cdot \Pi\left(\alpha^{n / p_{i} p_{i}}-\beta^{n / p_{i} p_{i}}\right) \cdots}{\Pi\left(\alpha^{n / p_{i}}-\beta^{n / p_{i}}\right) \cdot \Pi\left(\alpha^{n / p_{i} p_{i} p_{k}}-\beta^{p_{i} p_{i} p_{k}}\right) \cdots} \tag{8}
\end{equation*}
$$

where the factors denoted by Π extend over the combinations $2,4,6, \ldots$ at a time of p_{1}, p_{2}, \cdots in the numerator and over the combinations $1,3,5$, ... at a time in the denominator. The total number of factors in the numerator of this equation is the same as that in the denominator; for, obviously, the first of these numbers is the sum of the positive terms and the second is the sum of the negative terms in the expansion of $(1-1)^{r}$ by the binomial formula, r being the number of different prime factors of n. Hence, dividing each of these factors in both numerator and denominator by $\alpha-\beta$, we have

$$
\begin{equation*}
F_{n}(\alpha, \beta)=\frac{D_{n} \cdot \Pi D_{n / p_{i} p_{j}} \cdots}{\Pi D_{n / p_{i}} \cdot \Pi D_{n / p_{i} p_{j} p_{k}} \cdots} \tag{9}
\end{equation*}
$$

where the products denoted by Π have a meaning similar to that above.
Let p be any prime factor of n and write

$$
n=\nu p^{a}
$$

where the exponent a is so chosen that ν is an integer which is not divisible by p. Consider the factors in the second member of (9) into which p does not enter explicitly; from (9) itself it is clear that these factors alone have the value $F_{\nu}\left(\alpha^{p a}, \beta^{p a}\right)$. In the same way we see that the factors into which p enters explicitly have the value $1 / F_{\nu}\left(\alpha^{p a-1}, \beta^{p a-1}\right)$. Hence

$$
\begin{equation*}
F_{n}(\alpha, \beta)=F_{\nu}\left(\alpha^{p a}, \beta^{p a}\right) \div F_{\nu}\left(\alpha^{p a-1}, \beta^{p a-1}\right) . \tag{10}
\end{equation*}
$$

Since

$$
F_{1}(\alpha, \beta)=\alpha-\beta
$$

equation (10) may be used as a recursion formula for determining $F_{n}(\alpha, \beta)$. For $n \leqq 36$, Sylvester's table* of cyclotomic functions may conveniently be employed for finding $F_{n}(\alpha, \beta)$.

In passing we note without demonstration that (10) may be proved directly and then be employed for the derivation of (9). \dagger

If, now, in equation (7) we replace n by $2 n$, give to ν the value 2 and remember that

$$
\frac{D_{2 n}}{D_{n}}=S_{n}
$$

we have

$$
\begin{equation*}
S_{n}=\alpha^{n}+\beta^{n}=\prod_{k} F_{k}(\alpha, \beta), \tag{11}
\end{equation*}
$$

[^2]where k runs over all those divisors of $2 n$ which contain 2 to the same power as $2 n$ itself. This important formula gives a (partial) factorization of the integer S_{n}.

Let ν be any odd divisor of n; then, writing n / ν for n in (11) we have

$$
\begin{equation*}
S_{n / \nu}=\prod_{k} F_{k}(\alpha, \beta), \tag{12}
\end{equation*}
$$

where k runs over all those divisors of $2 n / \nu$ which contain 2 to the same power as $2 n / \nu$ itself. Dividing (11) by (12), member for member, we have

$$
\begin{equation*}
\frac{S_{n}}{S_{n / v}}=\prod_{k} F_{k}(\alpha, \beta), \quad \nu \text { odd } \tag{13}
\end{equation*}
$$

where k runs over all those divisors of $2 n$ which contain 2 to the same power as $2 n$ itself and which do not divide $2 n / \nu$.

2. General Properties of the Integers D_{n} and S_{n} Relative to Divisibility.

In view of the fact that a rational integral symmetric function of α, β with integral coefficients is an integer we have readily the two equations

$$
\begin{aligned}
(\alpha+\beta)^{n} & =\alpha^{n}+\beta^{n}+\alpha \beta I_{1}=S_{n}+\alpha \beta I_{1}, \\
D_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & =\alpha^{n-1}+\beta^{n-1}+\alpha \beta I_{2}=S_{n-1}+\alpha \beta I_{2},
\end{aligned}
$$

where I_{1} and I_{2} are integers. Since $\alpha \beta$ and $\alpha+\beta$ are relatively prime integers it follows from the first of these equations that S_{n} is prime to $\alpha \beta$ for every value of n. Then from the second of the equations we conclude that D_{n} is likewise prime to $\alpha \beta$ for every value of n. Hence we have the following theorem:

Theorem I. The integers D_{n} and S_{n} are both prime to $\alpha \beta$.
This theorem enables us to dispose of an exceptional case; namely, when $D_{m}=0$ for some value of m. In this case $\alpha^{m}=\beta^{m}$ and hence

$$
S_{m}=2 \alpha^{m}
$$

But S_{m} is prime to $\alpha \beta$ and hence to $\alpha^{m} \beta^{m}$. These two results agree only when

$$
\alpha^{m}=\beta^{m}= \pm 1,
$$

so that in this case α and β are both roots of unity. It is easy to see that S_{k} can assume no other value than $-2,-1,0,1,2$; for

Now

$$
\left|S_{k}\right| \leqq\left|\alpha^{k}\right|+\left|\beta^{k}\right|=2
$$

$$
(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta=\text { integer } ;
$$

and hence
since $\alpha \neq \beta$. Therefore

$$
|\alpha-\beta| \equiv 1,
$$

$$
\left|D_{k}\right| \leqq\left|\alpha^{k}-\beta^{k}\right| \leqq\left|\alpha^{k}\right|+\left|\beta^{k}\right|=2
$$

so that D_{k} can take only the values $-2,-1,0,1,2$. A corresponding discussion can be made when $S_{m}=0$ for some value of m, and with like results. The cases $D_{m}=0$ for some m and $S_{m}=0$ for some m are therefore both trivial. They arise when and only when α and β are roots of unity. Hence in what follows we shall exclude from consideration the case in which α and β are roots of unity. Then D_{m} and S_{m} are always different from zero.

Now

$$
\left(\alpha^{n}+\beta^{n}\right)^{2}-\left(\alpha^{n}-\beta^{n}\right)^{2}=4 \alpha^{n} \beta^{n},
$$

and hence

$$
S_{n}^{2}-(\alpha-\beta)^{2} D_{n}^{2}=4 \alpha^{n} \beta^{n}
$$

It is clear that $(\alpha-\beta)^{2}$ is an integer. Then from the above equation it follows that any common divisor of $S_{n}{ }^{2}$ and $D_{n}{ }^{2}$ must be a divisor of $4 \alpha^{n} \beta^{n}$; but by Theorem I such a divisor is prime to $\alpha \beta$. Hence it is a divisor of 4. Therefore, either D_{n} and S_{n} are relatively prime or they have the greatest common divisor 2. That both of these cases may arise is shown by the following examples:
(1) $\alpha=2, \beta=1 . \quad D_{n}$ and S_{n} have not the common divisor 2 and hence are relatively prime;
(2) $\alpha=3, \beta=1 . \quad D_{n}$ and S_{n} have the common factor 2 if n is even. Hence we have the following theorem:*
Theorem II. The integers D_{n} and S_{n} either are relatively prime or have the greatest common divisor 2.

We shall now determine the character of D_{n} and S_{n} relative to divisibility by 2. From Theorem I it follows that both of them are odd when $\alpha \beta$ is even. Hence we have to treat further only the case when $\alpha \beta$ is odd. This will separate further into two cases according as $\alpha+\beta$ is odd or even. We start from the recurrence formulæ

$$
\begin{align*}
D_{n+2}-(\alpha+\beta) D_{n+1}+\alpha \beta D_{n} & =0 \\
S_{n+2}-(\alpha+\beta) S_{n+1}+\alpha \beta S_{n} & =0 \tag{14}
\end{align*}
$$

which are readily verified by substituting for D_{k} and $S_{k}, k=n, n+1$, $n+2$, their values in terms of α and β. Since for the present discussion $\alpha \beta$ is odd, we have from (14)

$$
D_{n+2} \equiv D_{n}, \quad S_{n+2} \equiv S_{n} \bmod 2
$$

or

$$
D_{n+2} \equiv D_{n+1}+D_{n}, \quad S_{n+2} \equiv S_{n+1}+S_{n} \bmod 2
$$

according as $\alpha+\beta$ is even or odd.

[^3]Now $D_{1}=1$ and $D_{2}=\alpha+\beta$. Hence from the above congruences which involve D_{n} we see readily that when $\alpha+\beta$ is even D_{n} is even or odd according as n is even or odd; and that when $\alpha+\beta$ is odd, D_{n} is even or odd according as n is or is not a multiple of 3 .

We treat the number S_{n} in a similar manner. We have

$$
S_{1}=\alpha+\beta, \quad S_{2}=\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta .
$$

Hence, if $\alpha+\beta$ is odd both S_{1} and S_{2} are odd; and if $\alpha+\beta$ is even both S_{1} and S_{2} are even. Therefore from the above congruences involving S_{n} we conclude readily that if $\alpha+\beta$ is even S_{n} is even for all values of n; and that if $\alpha+\beta$ is odd S_{n} is even or odd according as n is or is not a multiple of 3 .

Collecting these results we have the following theorem:
Theorem III. If $\alpha \beta$ is even both D_{n} and S_{n} are odd. If $\alpha \beta$ is odd and $\alpha+\beta$ is even, then S_{n} is even for all values of n while D_{n} is even or odd according as n is even or odd. If both $\alpha \beta$ and $\alpha+\beta$ are odd then D_{n} and S_{n} are both even or both odd according as n is or is not a multiple of 3 .

From the properties of symmetric functions of the roots of an algebraic equation and the algebraic divisibility of D_{n} by D_{ν} when ν is a divisor of n, it follows immediately that the integer D_{n} is divisible by the integer D_{ν} when ν is a divisor of n. This is also an immediate consequence of equation (7); and the latter equation in general states more than this, that is, it gives a partial factorization of the integer D_{n} / D_{ν}. Thus we have the following theorem:

Theorem IV. If ν is a divisor of n then D_{ν} is a divisor of D_{n} and we have

$$
\frac{D_{n}}{D_{\nu}}=\prod_{k} F_{k}(\alpha, \beta),
$$

where k ranges over all those divisors of n which are not at the same time divisors of ν.

For $\nu=1$ this theorem gives a partial factorization of D_{n}, since $D_{1}=1$. In the preceding section we proved that the quantities $F_{k}(\alpha, \beta)$ have integer values.

By the aid of equation (13) the following theorem may be demonstrated:
Theorem V. If ν is a divisor of n such that n / ν is odd then S_{n} is divisible by S_{ν} and we have

$$
\frac{S_{n}}{S_{\nu}}=\prod_{k} F_{k}(\alpha, \beta),
$$

where k runs over all those divisors of $2 n$ which contain 2 to the same power as $2 n$ itself and which do not divide 2ν.

From the identity
$\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{n}+\beta^{n}\right)-\left(\alpha^{n}-\beta^{n}\right)\left(\alpha^{m}+\beta^{m}\right)=2 \alpha^{n} \beta^{n}\left(\alpha^{m-n}-\beta^{m-n}\right), \quad m>n$,
we have readily

$$
\begin{equation*}
D_{m} S_{n}-D_{n} S_{m}=2 \alpha^{n} \beta^{n} D_{m-n} \tag{15}
\end{equation*}
$$

From this equation and the fact that D_{m} and D_{n} are prime to $\alpha \beta$ it follows that every common odd divisor of D_{m} and D_{n} is also a divisor of D_{m-n}; whence we conclude readily that every common odd divisor of D_{m} and D_{n} is a divisor of D_{ν} where ν is the greatest common divisor of m and n. But according to Theorem IV D_{ν} is a divisor of D_{m} and D_{n}. Hence the greatest common divisor of D_{m} and D_{n} is D_{ν} provided that either D_{m} / D_{ν} or D_{n} / D_{ν} is odd. This latter fact we shall now prove by aid of Theorems I and III.

We have

$$
\frac{D_{m}}{D_{\nu}}=\frac{\alpha^{m}-\beta^{m}}{\alpha^{\nu}}-\beta^{\nu}=\frac{\bar{\alpha}^{m / \nu}-\bar{\beta}^{m / \nu}}{\bar{\alpha}-\bar{\beta}},
$$

if we replace $\alpha^{\nu}, \beta^{\nu}$ by $\bar{\alpha}, \bar{\beta}$. The last member of the above equation we denote by $\bar{D}_{m / v}$. We define $\bar{D}_{n / v}$ in a similar manner. It follows from Theorem I that $\alpha^{\nu} \beta^{\nu}$ and $\alpha^{\nu} \pm \beta^{\nu}$ are relatively prime. They are both different from zero. That is, $\bar{\alpha} \bar{\beta}$ and $\bar{\alpha}+\bar{\beta}$ are relatively prime integers both of which are different from zero. Hence we may apply Theorem III to $\bar{D}_{m / v}$ and $\bar{D}_{n / v}$. If $\bar{\alpha} \bar{\beta}$ is even both of these numbers are odd. If $\bar{\alpha} \bar{\beta}$ is odd and $\bar{\alpha}+\bar{\beta}$ is even one of the numbers $\bar{D}_{m / \nu}$ and $\bar{D}_{n / \nu}$ is odd; for either m / ν or n / ν is odd, since ν is the greatest common divisor of m and n. Likewise, if $\bar{\alpha} \bar{\beta}$ and $\bar{\alpha}+\bar{\beta}$ are both odd then one of the numbers $\bar{D}_{m / v}$, and $\bar{D}_{n / v}$, is odd; for either m / ν or n / ν is not divisible by 3 , since ν is the greatest common divisor of m and n. Hence $\bar{D}_{m / \nu}$ and $\bar{D}_{n / \nu}$ have not the common factor 2.

Remembering that $\bar{D}_{m / \nu}=D_{m} / D_{\nu}$ and $\bar{D}_{n / \nu}=D_{n} / D_{\nu}$ and making use of the results of the last two paragraphs we have the theorem:*

Theorem VI. The greatest common divisor of D_{m} and D_{n} is D_{ν} where ν is the greatest common divisor of m and n.

Since $D_{1}=1$ we have at once the following corollary:
Corollary. The integers D_{m} and D_{n} are relatively prime when m and n are relatively prime.

The example

$$
S_{6}(2,1)=2^{6}+1=5.13, \quad S_{4}=2^{4}+1=17, \quad S_{2}=2^{2}+1=5
$$

shows at once that the greatest common divisor of S_{m} and S_{n} is not always

[^4]S_{ν} where ν is the greatest common divisor of m and n. If, however, m / ν and n / ν are both odd this simple law obtains, as we now show. In this case it follows from Theorem V that S_{v} is a common divisor of S_{m} and S_{n}. Now
$$
D_{2 m}=S_{m} D_{m}
$$
and
$$
D_{2 n}=S_{n} D_{n}
$$
whence we conclude by aid of Theorem VI that the greatest common divisor of S_{m} and S_{n} is a factor of $D_{2 v}$. Now
$$
D_{2 \nu}=S_{\nu} D_{\nu}
$$
and hence we have only to examine what factors D_{ν} has in common with S_{m} and S_{n}. Now D_{ν} is a factor of D_{m}, and D_{m} and S_{m} have the greatest common divisor 1 or 2 . Hence D_{ν} has with S_{m} and S_{n} the greatest common divisor 1 or 2. Therefore S_{m} and S_{n} have the greatest common divisor S_{ν} or $2 S_{\nu}$; and in the next two paragraphs we show that the latter case does not arise.

To prove that the greatest common divisor under consideration is not $2 S_{\nu}$ it is sufficient to show that either S_{m} / S_{ν} or S_{n} / S_{ν} is odd. This follows at once from Theorem III if $\alpha \beta$ is even; for then S_{m} and S_{n} are odd. In general

$$
\frac{S_{m}}{S_{v}}=\frac{\alpha^{m}+\beta^{m}}{\alpha^{\nu}+\beta^{v}}=\frac{\bar{\alpha}^{m / \nu}+\bar{\beta}^{n / \nu}}{\bar{\alpha}+\bar{\beta}}
$$

if $\alpha^{\nu}=\alpha$ and $\beta^{\nu}=\bar{\beta}$. Denote the last numerator above by $\bar{S}_{m / \nu}$ and define $\bar{S}_{n / \nu}$ in a similar way. Then Theorem III is applicable to $\bar{S}_{m / \nu}$ and $\bar{S}_{n / \nu}$. Now either m / ν or n / ν is prime to 3 , and hence one of the numbers $\bar{S}_{m / \nu}$ and $\bar{S}_{n / v}$ is odd if $\bar{\alpha} \bar{\beta}$ and $\bar{\alpha}+\bar{\beta}$ are both odd, that is, if $\alpha \beta$ and $\alpha+\beta$ are both odd. In this case, then, one at least of the numbers S_{m} / S_{ν} and S_{n} / S_{ν} is odd.

Let us next consider the case in which $\alpha \beta$ is odd and $\alpha+\beta$ is even; say that $\alpha+\beta$ is an odd multiple of 2^{k}. Then, since

$$
S_{1}=\alpha+\beta
$$

and

$$
S_{2}=\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta,
$$

it is easy to see that S_{1} and S_{2} are odd multiples of 2^{k} and 2 respectively. By means of the second recursion formula (14) one sees that in general S_{n} is an odd multiple of 2^{k} or of 2 according as n is odd or even. Hence in this case S_{m} / S_{v} and S_{n} / S_{ν} are both odd, since m and ν and likewise n and ν are both odd or both even.

Thus we have the following theorem:

Theorem VII. If ν is the greatest common divisor of m and n, and m / ν and n / ν are both odd, then the greatest common divisor of S_{m} and S_{n} is S_{ν}.

We turn now to an interesting theorem of a different character, namely:
Theorem VIII. Let $m_{1}, m_{2}, \cdots, m_{s}$ and $n_{1}, n_{2}, \cdots, n_{r}$ be two sets of positive integers which have the property that any positive integer d, different from unity, which is a factor of (just) t integers of the second set is also a factor of at least t integers of the first set; then the number

$$
\frac{D_{m_{1}} \cdot D_{m_{2}} \cdot \cdots \cdot D_{m_{1}}}{D_{n_{1}} \cdot D_{n_{2}} \cdot \cdots \cdot D_{n_{r}}}
$$

is an integer.
This theorem is an immediate consequence of the (partial) factorization of D_{n} given in equation (5).

Corollary I. The product of any n consecutive terms of the sequence $D_{1}, D_{2}, D_{3}, \cdots$ is divisible by the product of the first n terms.*

Corollary II. The number

$$
\frac{D_{1} D_{2} \cdots D_{n_{1}+n_{2}+\cdots+n_{k}}}{\left(D_{1} D_{2} \cdots D_{n_{1}}\right)\left(D_{1} D_{2} \cdots D_{n_{2}}\right) \cdots\left(D_{1} D_{2} \cdots D_{n_{k}}\right)}
$$

is an integer.
This result is analogous to the theorem that the polynomial coefficient

$$
\frac{\left(n_{1}+n_{2}+\cdots+n_{k}\right)!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

is an integer.
Let m and n be any two relatively prime positive integers and suppose that the positive integer $d(d \neq 1)$ is a divisor of s integers of the set 1,2 , \cdots, m and of t integers of the set $1,2, \cdots, n$. Then d is obviously a divisor of at least $s+t$ integers of the set $1,2, \cdots, m+n-1$. In view of this fact Theorem VIII yields the further corollary:

Corollary III. If m and n are any two relatively prime positive integers, then the number

$$
\frac{D_{1} D_{2} \cdots D_{m+n-1}}{\left(D_{1} D_{2} \cdots D_{m}\right)\left(D_{1} D_{2} \cdots D_{n}\right)}
$$

is an integer.
This theorem is analogous to that which asserts that

$$
\frac{(m+n-1)!}{m!n!}
$$

is an integer, provided that m and n are relatively prime.

[^5]Similarly one may prove an extended analogue of the theorem which states that

$$
\frac{\left(k m_{1}\right)!\left(k m_{2}\right)!\cdots\left(k m_{k}\right)!}{\left.m_{1}!m_{2}!\cdots+m_{k}\right)!}, \quad k \equiv 2
$$

is an integer, namely:
Corollary IV. The number

$$
\frac{\left(D_{1} D_{2} \cdots D_{k m_{2}}\right)\left(D_{1} D_{2} \cdots D_{k m_{2}}\right) \cdots\left(D_{1} D_{2} \cdots D_{k m_{k}}\right)}{\left(D_{1} D_{2} \cdots D_{m_{1}}\right)^{k-1} \cdots\left(D_{1} D_{2} \cdots D_{m_{k}}\right)^{k-1}\left(D_{1} D_{2} \cdots D_{m_{1}+m_{2}+\cdots+m_{k}}\right)}
$$

is an integer.
Just as equation (5) was used in the demonstration of Theorem VIII we may employ equation (11) to prove the following theorem:

Theorem IX. Let $m_{1}, m_{2}, \cdots, m_{s}$ and $n_{1}, n_{2}, \cdots, n_{r}$ be two sets of positive integers such that every positive integer d which is a factor of (just) t of the numbers $n_{1}, n_{2}, \cdots, n_{r}$ with odd quotient is also a factor of at least t of the numbers $m_{1}, m_{2}, \cdots, m_{s}$ with odd quotient. Then the number

$$
\frac{S_{m_{1}} \cdot S_{m_{2}} \cdot \cdots \cdot S_{m_{1}}}{S_{n_{1}} \cdot S_{n_{2}} \cdot \cdots \cdot S_{n_{r}}}
$$

is an integer.
Corollary. The product of any $2 n-1$ consecutive terms of the sequence $S_{1}, S_{3}, S_{5}, \cdots$ is divisible by the product of the first n terms.

If m is any integer and q is any odd prime, it is obvious that there exist integers

$$
a_{1}, a_{2}, \cdots, a_{s}, \quad s=\frac{q-1}{2}
$$

dependent on q alone, such that
$\alpha^{m q}-\beta^{m q}=\left(\alpha^{m}-\beta^{m}\right)^{q}+a_{1} \alpha^{m} \beta^{m}\left(\alpha^{m}-\beta^{m}\right)^{q-2}+a_{2} \alpha^{2 m} \beta^{2 m}\left(\alpha^{m}-\beta^{m}\right)^{q-4}$

$$
+\cdots+a_{s} \alpha^{s m} \beta^{s m}\left(\alpha^{m}-\beta^{m}\right) ;
$$

whence

$$
\begin{equation*}
D_{m q}=(\alpha-\beta)^{q-1} D_{m}^{q}+a_{1}(\alpha-\beta)^{q-3} \alpha^{m} \beta^{m} D_{m}^{q-2}+\cdots+a_{s} \alpha^{s m} \beta^{m m} D_{m} \tag{16}
\end{equation*}
$$

Let us evaluate a_{8}. Since it is independent of α, β and m, we may choose any convenient values for these numbers. Then put $m=1, \beta=1$, $\alpha=r+1$, where r is a positive integer to be chosen at convenience. Then from (16) we have

$$
\frac{(r+1)^{q}-1}{r} \equiv a_{s}(r+1)^{s} \bmod r
$$

If we suppose r to be a prime number different from q we see that a_{s} is not divisible by r. If we put $r=q^{2}$ it follows that a_{s} is divisible by q but not by q^{2}. Hence $a_{s}=q$.

Suppose now that D_{m} is divisible by $p^{\lambda}, \lambda \neq 0$, and by no higher power of p, p being a prime number; then from (16), since $a_{s}=q$, we have

$$
\begin{equation*}
D_{m q} \equiv q \alpha^{\varepsilon m} \beta^{s m} D_{m} \bmod p^{3 \lambda} . \tag{17}
\end{equation*}
$$

From this congruence it follows that $p^{\lambda+1}$ is the highest power of p contained in $D_{m p}$, provided that p is odd, and that p^{λ} is the highest power of p contained in $D_{m q}$ when q is an odd prime different from p. We enquire further: What is the highest power of p contained in $D_{2 m}$? We have $D_{2 m}=D_{m} S_{m}$. In Theorem III we have seen that D_{m} and S_{m} have no common odd factor (different from unity). Hence, if p is an odd prime the highest power of p contained in $D_{2 m}$ is p^{λ}. If p is even, so that D_{m} is divisible by 2 , it follows from Theorem III that S_{m} is divisible by 2. Then it follows from Theorem II that D_{m} and S_{m} have the highest common factor 2 . Hence in this case $D_{2 m}$ contains $2^{\lambda+1}$; and it contains no higher power of 2 unless $\lambda=1$.

These results lead to the following theorem:
Theorem X. If for $\lambda>0, p^{\lambda} \neq 2, p^{\lambda}$ is the highest power of a prime p contained in D_{m} then the highest power of p contained in $D_{m_{\mu} p^{a}}$ is $p^{a+\lambda}, \mu$ being any number prime to p. If $p^{\lambda}=2$, then $D_{m_{\mu} 2^{a}}$ contains the factor 2^{a+1} and $D_{m_{\mu}}$ is an odd multiple of 2.*

Suppose that S_{m} is divisible by $p^{\lambda}, \lambda>0$, but by no higher power of the odd prime p. Then $D_{2 m}$ contains p^{λ} and no higher power of p, since

$$
D_{2 m}=D_{m} S_{m}
$$

and D_{m} and S_{m} have no common odd prime factor. Therefore, according to the preceding theorem, $D_{2 m_{\mu} p^{a}}$, or $D_{m_{\mu} p^{a}} \cdot S_{m_{\mu} p^{a}}, \mu$ being prime to p, contains $p^{a+\lambda}$ and no higher power of p. Moreover $D_{m_{\mu} p^{a}}$ and $S_{m \mu p^{a}}$ do not have a factor p in common. Hence one of these numbers contains $p^{a+\lambda}$ and no higher power of p while the other is prime to p. Since $D_{2 m}$ is a divisor of $D_{m \mu p^{a}}$ if μ is even, we see that $D_{m \mu p^{a}}$ contains $p^{a+\lambda}$ when μ is even. When μ is odd S_{m} is a factor of $S_{m \mu} p^{a}$ and hence in this case $S_{m_{\mu} p^{a}}$ contains the factor $p^{a+\lambda}$.

Thus we have the following theorem:
Theorem XI. If $p^{\lambda}, \lambda>0$, is the highest power of an odd prime p contained in S_{m} and μ is a number prime to p; then if μ is even $D_{m \mu p}{ }^{a}$ is divisible by $p^{a+\lambda}$ and by no higher power of p and $S_{m_{\mu} p^{a}}$ is prime to p, while if μ is odd $D_{m_{\mu} p^{a}}$ is prime to p and $S_{m_{\mu} p^{a}}$ is divisible by $p^{a+\lambda}$ and by no higher power of p.

[^6]3. On the Appearance of a Given Prime Factor in the Sequence $D_{1}, D_{2}, D_{3}, \cdots$.
If it is known that a prime number p is a factor of D_{m}, theorems in the preceding section enable us to say how p enters into $D_{m \mu}{ }^{a}$. In the present section we show that any given prime p, which is not a factor of $\alpha \beta$, is a factor of a certain definite number of the sequence $D_{1}, D_{2}, D_{3}, \cdots$; we also carry out other related investigations. We have need of two lemmas, as follows:

Lemma I. If $S\left(\alpha^{p}, \beta^{p}\right)$ is any rational integral symmetric function of α^{p}, β^{p} with integral coefficients, then

$$
S\left(\alpha^{p}, \beta^{p}\right) \equiv S(\alpha, \beta) \bmod p
$$

p being a prime number.
The proof is not difficult. From Fermat's theorem it follows that

$$
\begin{equation*}
\alpha^{p} \beta^{p} \equiv \alpha \beta \bmod p, \tag{18}
\end{equation*}
$$

since $\alpha \beta$ is an integer. Likewise

$$
(\alpha+\beta)^{p} \equiv \alpha+\beta \bmod p
$$

But by the aid of the binomial formula we see that

$$
(\alpha+\beta)^{p} \equiv \alpha^{p}+\beta^{p} \bmod p
$$

since the binomial coefficients for the prime exponent p are all multiples of p and $(\alpha+\beta)^{p}-\left(\alpha^{p}+\beta^{p}\right)$ is therefore clearly p times a polynomial which is symmetric in α, β and has integral coefficients; that is, $(\alpha+\beta)^{p}$ $-\left(\alpha^{p}+\beta^{p}\right)$ is p times an integer. Hence

$$
\begin{equation*}
\alpha^{p}+\beta^{p} \equiv \alpha+\beta \bmod p \tag{19}
\end{equation*}
$$

But, since α^{p} and β^{p} are roots of the equation

$$
x^{2}-\left(\alpha^{p}+\beta^{p}\right) x+\alpha^{p} \beta^{p}=0
$$

it is a consequence of the theory of symmetric functions of the roots of an algebraic equation that $S\left(\alpha^{p}, \beta^{p}\right)$ can be expressed in the form

$$
S\left(\alpha^{p}, \beta^{p}\right)=P\left(\alpha^{p}+\beta^{p}, \alpha^{p} \beta^{p}\right),
$$

where P is a polynomial in $\alpha^{p}+\beta^{p}, \alpha^{p} \beta^{p}$ with integral coefficients. From (18) and (19) it follows that

$$
P\left(\alpha^{p}+\beta^{p}, \alpha^{p} \beta^{p}\right) \equiv P(\alpha+\beta, \alpha \beta) \bmod p
$$

But

$$
P(\alpha+\beta, \alpha \beta)=S(\alpha, \beta)
$$

and therefore
as was to be proved.

$$
S\left(\alpha^{p}, \beta^{p}\right) \equiv S(\alpha, \beta) \bmod p
$$

If m is any integer and q is an odd prime, we have an identity of the form

$$
\left(\alpha^{m}-\beta^{m}\right)^{q}=\left(\alpha^{q m}-\beta^{q m}\right)-q \alpha^{m} \bar{\beta}^{m}\left(\alpha^{m(q-2)}-\beta^{m(q-2)}\right)+\cdots ;
$$

whence it follows that

$$
(\alpha-\beta)^{q-1} D_{m}^{q}=D_{m q}+q I,
$$

where I is an integer. Hence

$$
D_{m q} \equiv(\alpha-\beta)^{q-1} D_{m} \bmod q
$$

Hence,
Lemma II. If m is any integer and q is any odd prime, we have

$$
D_{m q} \equiv(\alpha-\beta)^{q-1} D_{m} \bmod q
$$

In particular,

$$
D_{q^{a}} \equiv(\alpha-\beta)^{q-1} D_{q^{a-1}} \equiv \cdots \equiv(\alpha-\beta)^{a(q-1)} D_{1} \bmod q
$$

Hence, since $D_{1}=1$, it follows that $D_{q^{a}}$ is divisible by q when and only when $(\alpha-\beta)^{2}$ is divisible by q.

Theorem III gives exact information concerning the divisibility of D_{n} and S_{n} by 2 . We shall now consider the question of the entrance of an odd prime factor q. If q is a factor of $\alpha \beta$ it follows from Theorem I that it does not divide either D_{n} or S_{n}. If it is a factor of $(\alpha-\beta)^{2}$ then it divides D_{q}, as we readily see from Lemma II. In what follows we shall consider the divisibility of D_{n} and S_{n} by an odd prime p which is not a divisor of either $(\alpha-\beta)^{2}$ or $\alpha \beta$.

If in equation (15) we put $m=p$ and $n=1$ we have

$$
D_{p} S_{1}-D_{1} S_{p}=2 \alpha \beta D_{p-1}
$$

or

$$
(\alpha+\beta) D_{p}-S_{p}=2 \alpha \beta D_{p-1} .
$$

From Lemma II it follows that

$$
D_{p} \equiv(\alpha-\beta)^{p-1} \bmod p
$$

and from Lemma I that

$$
S_{p} \equiv \alpha+\beta \bmod p
$$

Hence from the last equation we have

$$
(\alpha+\beta)(\alpha-\beta)^{p-1}-(\alpha+\beta) \equiv 2 \alpha \beta D_{p-1} \bmod p
$$

Now $(\alpha-\beta)^{2}$ is an integer; and therefore it follows from Fermat's theorem that

$$
(\alpha-\beta)^{p-1} \equiv \pm 1 \bmod p
$$

Hence from the above congruence we have the two cases

$$
\begin{aligned}
& D_{p-1} \equiv 0 \bmod p \quad \text { if } \quad(\alpha-\beta)^{p-1} \equiv 1 \bmod p, \\
& \alpha \beta D_{p-1} \equiv-(\alpha+\beta) \bmod p \quad \text { if } \quad(\alpha-\beta)^{p-1} \equiv-1 \bmod p .
\end{aligned}
$$

Now it is easy to verify that

$$
D_{p+1}-(\alpha+\beta) D_{p}+\alpha \beta D_{p-1}=0
$$

and hence we see that

$$
D_{p+1} \equiv 0 \bmod p \quad \text { if } \quad(\alpha-\beta)^{p-1} \equiv-1 \bmod p
$$

Therefore we have the following theorem:*
Theorem XII. An odd prime p which does not divide either $(\alpha-\beta)^{2}$ or $\alpha \beta$ is a factor of D_{p-1} or of D_{p+1} according as $(\alpha-\beta)^{p-1}$ is congruent to +1 or to -1 modulo p.

Obviously, if $\alpha-\beta$ is an integer (that is, if α and β are integers) we have always that D_{p-1} is divisible by p.

By means of Theorems X and XII we are now to prove a result of fundamental importance. In order to be able to state this result succinctly we shall employ a number-theory function $\lambda_{r s}(n)$ which we define below. It is convenient at the same time to define a second function $\varphi_{r s}(n)$ which is intimately related to $\lambda_{r s}(n)$.

Let $r s$ and $r+s$ be any two integers; that is, let r and s be the roots of any quadratic equation of the form

$$
x^{2}-u x+v=0
$$

where u and v are integers. When p is an odd prime we define the symbol $\left(\frac{r, s}{p}\right)$ by the congruence

$$
(r-s)^{p-1} \equiv\left(\frac{r, s}{p}\right) \bmod p
$$

it being understood that $\left(\frac{r, s}{p}\right)$ is the residue of least absolute value; whence $\left(\frac{r, s}{p}\right)=0,+1$, or -1 according as $(r-s)^{2}$ is divisible by p, is a quadratic residue of p, or is a quadratic non-residue of p. The symbol $\left(\frac{r, s}{2}\right)$ is defined thus:

$$
\begin{aligned}
& \left(\frac{r, s}{2}\right)=1, \text { if } r s \text { is even; } \\
& \left(\frac{r, s}{2}\right)=0, \text { if } r s \text { is odd and } r+s \text { is even; } \\
& \left(\frac{r, s}{2}\right)=-1, \text { if } r s \text { and } r+s \text { are both odd. }
\end{aligned}
$$

[^7]Then if

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}},
$$

where $p_{1}, p_{2}, \cdots, p_{k}$ are the different prime factors of n, we define $\varphi_{r s}(n)$ by the equation

$$
\varphi_{r s}(n)=\prod_{i=1}^{k} p_{i}^{a_{i}-1}\left[p_{i}-\left(\frac{r, s}{p_{i}}\right)\right] .
$$

This function is similar to one introduced by Lucas, l. c., p. 300. It is, however, somewhat more general. For $r=2$ and $s=1$ we have

$$
\varphi_{21}(n)=\varphi(n)
$$

where $\varphi(n)$ is Euler's φ-function of n. The function introduced by Lucas does not have this interesting property of including the φ-function as a special case.

The functional value $\lambda_{r s}(n)$ is defined to be the least common multiple of the numbers

$$
p_{i}^{a_{i}-1}\left[p_{i}-\left(\frac{r, s}{p_{i}}\right)\right], \quad i=1,2, \cdots, k
$$

It is obvious that $\lambda_{r s}(n)$ is a divisor of $\varphi_{r s}(n)$.
The functions $\varphi_{r s}(n)$ and $\lambda_{r s}(n)$ have several important properties; but this is not an appropriate place to develop them in full.

The fundamental theorem to be proved may now be stated as follows:
Theorem XIII. If the number n,

$$
n=p_{1}{ }^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}{ }^{a_{k}},
$$

where $p_{1}, p_{2}, \cdots, p_{k}$ are the different prime factors of n, is prime to $\alpha \beta$ and if

$$
\lambda=\lambda_{\alpha \beta}(n),
$$

we have

$$
D_{\lambda} \equiv 0 \bmod n
$$

To prove this theorem it is sufficient to show that D_{λ} contains the factor $p_{i}{ }^{a_{i}}$ where i is any number of the set $1,2, \cdots, k$. This follows at once from previous results. For, λ is a multiple of t_{i},

$$
t_{i}=p_{i}^{\alpha_{i-1}}\left[p_{i}-\left(\frac{\alpha, \beta}{p_{i}}\right)\right]=p_{i}^{q_{i-1}} k_{i}
$$

say. From Theorems XII and III and the remark following Lemma II we see that $D_{k_{\mathrm{i}}}$ is in every case divisible by p_{i}; and hence from X that D_{λ} is divisible by $p_{i}{ }^{a_{i}}$.

Corollary.* If $\varphi=\varphi_{a \beta}(n)$, then $D_{\phi} \equiv 0 \bmod n$.

[^8]In connection with these simple theorems concerning the divisors of the numbers in the sequence D_{1}, D_{2}, \cdots, it should be noticed that no laws of corresponding simplicity obtain in the case of the sequence S_{1}, S_{2}, \cdots. We have seen that an odd prime p which does not divide either $(\alpha-\beta)^{2}$ or $\alpha \beta$ is a factor of D_{p-1} or of D_{p+1}. But in the case of the sequence S_{1}, S_{2}, \cdots it often happens that a given prime number is not a factor of any term. Thus 7 is not a factor of $S_{n}(2,1), \equiv 2^{n}+1$, for any value of n. More generally, suppose that D_{k}, where k is odd, has an odd prime factor p while p is not a divisor of any D_{ν} for ν less than k. From Theorem VI it follows that D_{m} is divisible by p when and only when m is a multiple of k. If we suppose that p is a divisor of S_{n} for any given value of n we shall be led to a contradiction. For, since $D_{2 n}=D_{n} S_{n}, D_{2 n}$ is divisible by p; and therefore $2 n$ is a multiple of k. But k is odd, and hence n is a multiple of k. Therefore D_{n} is divisible by p; and D_{n} and S_{n} have the common odd prime factor p, which is impossible. Hence, an odd prime number p which divides D_{k}, where k is odd, and does not divide any D_{ν} for ν less than k, is not a factor of any S_{n}.

4. On the Numerical Factors of the Forms $F_{k}(\alpha, \beta)$.

We have already seen that the numbers $F_{k}(\alpha, \beta)$ are of fundamental importance in the factorization of D_{n} and S_{n}. We turn therefore to a detailed treatment of these numbers.

Let us suppose that

$$
F_{\nu}(\alpha, \beta) \equiv 0 \bmod p, \quad \nu>1
$$

and that ν is not a multiple of the prime number p. Suppose that k is a subscript for which

$$
F_{k}(\alpha, \beta) \equiv 0 \bmod p
$$

Now* F_{ν} and F_{k} are divisors of D_{ν} and D_{k} respectively, while the greatest common divisor of D_{ν} and D_{k} is D_{δ}, where δ is the greatest common divisor of ν and k. If we suppose that δ is different from ν we shall be led to a contradiction; for, F_{ν} is then a factor of D_{ν} / D_{δ}, as we see from (5), whereas from Theorem X it follows that D_{ν} / D_{δ} is not divisible by p since p is a factor of D_{δ} and ν / δ is prime to p. Hence $\delta=\nu$; and therefore k is a multiple of ν.

We shall now show that $F_{\nu p^{a}}(\alpha, \beta), a>0$, is divisible by p but not by p^{2}, except that when $p=2, \nu=3, F_{6}$ may be divisible by 2^{2}. [From Theorem III it follows that F_{6} is divisible by 2.] If we suppose that we do not have simultaneously $p=2, \nu=3, a=1$, we may proceed as follows: From

[^9]Theorem IV we have

$$
\frac{D_{\nu p^{a}}}{D_{\nu p^{a-1}}}=\prod_{i} F_{i}(\alpha, \beta),
$$

where i ranges over those divisors of νp^{a} which contain the factor p^{a}. From Theorem X it follows that the first member of this equation is divisible by p but not by p^{2}. Hence (only) one of the numbers $F_{i}(\alpha, \beta)$ of the second member is divisible by p and it is not divisible by p^{2}. Suppose that this number is that for which $i=k$. Then k is a multiple of p^{a}. But from the discussion in the preceding paragraph we see that k is a multiple of ν. Hence $k=\nu p^{a}$, since this is the only common multiple of ν and p^{a} occurring as a subscript in the second number of our equation.

From this we conclude that each of the numbers $F_{\nu p}, F_{\nu p^{2}}, \cdots$ contains the factor p but that no one of them contains p^{2}, except that when $p=2$, $\nu=3, F_{6}$ may contain 2^{2}.

Now consider the number $F_{\nu \mu p^{a}}$, where μ is greater than unity and is prime to p. It is a divisor of $D_{\nu \mu p^{a}} / D_{\nu p^{a}}$; and from X it follows that the latter number is not divisible by p. Hence $F_{\nu \mu p^{a}}$ is prime to p.

Let us suppose that $F_{1}{ }^{2}, \equiv(\alpha-\beta)^{2}$, is divisible by the odd prime p. From the remark following Lemma II we see that each of the numbers $F_{p}, F_{p^{2}}, \cdots$ is divisible by p. Just as in the preceding argument we may show that no one of the numbers $F_{p^{2}}, F_{p^{3}}, \cdots$ is divisible by p^{2}, and that $F_{\mu p^{a}}$ is not divisible by p if μ is greater than 1 and is prime to p and $a>0$. The example

$$
\alpha=1+\sqrt{6}, \quad \beta=1-\sqrt{6}, \quad(\alpha-\beta)^{2}=24, \quad F_{3}=\alpha^{2}+\alpha \beta+\beta^{2}=9
$$

shows that $F_{1}{ }^{2}$ may be divisible by p while F_{p} is at the same time divisible by p^{2}. If μ is greater than 1 and is prime to p and if further F_{μ} is divisible by p, we see at once that D_{μ} and D_{p} are both divisible by p - contrary to the corollary to Theorem VI, which asserts that D_{μ} and D_{p} are relatively prime since μ and p are relatively prime. Hence F_{μ} is not divisible by p.

Now suppose that $F_{1}{ }^{2}$ is divisible by 2. Then, since

$$
F_{1}^{2}=(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta
$$

it follows that $\alpha+\beta$ is divisible by 2. That is, F_{2} is divisible by 2 . The example $\alpha=2^{k}+1, \beta=2^{k}-1$ shows that F_{2} may be divisible by any power of 2 whatever. By means of the relation

$$
F_{2^{a}}=\alpha^{2^{a-1}}+\beta^{2^{a-1}}=\left(\alpha^{2^{a-2}}+\beta^{2^{a-2}}\right)^{2}-2 \alpha^{2^{a-2}} \beta^{2^{a-2}}
$$

it may be proved, however, that $F_{2^{a}}, a>1$, is divisible by 2 but not by 2^{2}.

[^0]: * Presented to the American Mathematical Society, December, 1912.
 \dagger American Journal of Mathematics, 1 (1878): 184-240, 289-321.
 \ddagger Crelle's Journal, 33 (1846): 71-77.
 § Annals of Mathematics, (2) 5 (1904): 173-180.
 || American Mathematical Monthly, 12 (1905): 86-89.
 I American Mathematical Monthly, 16 (1909): 153-159.
 ** Compare the method employed by Dickson in the paper already cited.
 $\dagger \dagger$ Compare the review of Lucas's paper in the Jahrbuch über die Fortschritte der Mathematik, 10 (1878): 134-136.

[^1]: * See Bachmann's Kreistheilung, especially the third lecture.

[^2]: * American Journal of Mathematics, 2 (1879): 367-368.
 \dagger Compare Dickson, l. c., p. 86.

[^3]: * Lucas (l. c., p. 200) states inaccurately that D_{n} and S_{n} are relatively prime.

[^4]: * The part of this theorem which applies to the odd divisors of D_{m} and D_{n} is due to Lucas (l. c., p. 206).

[^5]: * The result contained in this corollary is due to Lucas, who gave, however, a very different proof of it (Lucas, l. c., p. 203).

[^6]: * The special case of this theorem in which $\mu=1$ is given by Lucas (1. c., p. 210), but Lucas failed to notice the exceptional character of the case when $p^{\lambda}=2$.

[^7]: * This theorem is due to Lucas (l. c., pp. 290, 296, 297). Lucas's proof, however, is different from that above.

[^8]: * This corollary is essentially the same as a certain fundamental result due to Lucas, l. c., p. 300. It should be noted that Lucas's statement of this theorem is not entirely accurate.

[^9]: * When no confusion can arise we sometimes write F_{ν} for $F_{\nu}(\alpha, \beta)$.

